Incremental Learning with Support Vector Machines and Fuzzy Set Theory

نویسندگان

  • Yu-Ming Chuang
  • Cha-Hwa Lin
چکیده

Over the past few years, a considerable number of studies have been made on Support Vector Machines (SVMs) in many domains to improve classification or prediction. However, SVMs request high computational time and memory when the datasets are large. Although incremental learning techniques are viewed as one possible solution developed to reduce the computation complexity of the scalability problem, few studies have considered that some examples close to the decision hyperplane other than support vectors (SVs) might contribute to the training process. Consequently, we propose a novel algorithm by improving Syed’s incremental learning method based on fuzzy set theory. At each learning step, SVs and potential informative examples, called candidate examples (CEs), are added to the next incremental learning step. We expect to achieve better accuracy and less execution time than other methods. In this ongoing study, the proposed algorithm would be investigated on five standard machine learning benchmark datasets to demonstrate the effectiveness of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Fuzzy one-class support vector machines

In one-class classification, the problem is to distinguish one class of data from the rest of the feature space. It is important in many applications where one of the classes is characterized well, while no measurements are available for the other class. Schölkopf et al. first introduced a method of adapting the support vector machine (SVM) methodology to the one-class classification problem, c...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

A Fuzzy Model of Support Vector Regression Machine

Fuzziness must be considered in systems where available information is uncertain. A model of such a vague phenomenon might be represented as a fuzzy system equation which can be described by the fuzzy functions defined by Zadeh’s extension principle. In this paper, we incorporate the concept of fuzzy set theory into the support vector machine (SVM). This integration preserves the benefits of SV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008